Imaginary Dive!!

複素数, 研究, 科学について

Circuit

実効値とは?交流の大きさに実効値を用いる理由

投稿日:2020年9月4日 更新日:

交流電圧, 交流電流は時刻とともに大きさと向きが変わるため, 直流電流と同じように大きさを決めることができません.

そこで登場するのが「実効値」です.

実効値とは?

時間変化する値の大きさを規定するには「平均を取る」という方法があります. 「速さ」によく用いられる方法です.

しかし, 交流電流は時刻とともに「向き」も変化するため, 平均を取ると「大きさがゼロ」ということもあり得ます. 大きさを規定する方法として平均値は有効とは言えません.

そこで用いられるのが, 実効値です. 実効値は「各瞬時値の2乗の平均の平方根」を指します. 英語では Root Mean Square (RMS) と呼びます.

実効値の計算のためには, まず, 交流電流(もしくは電圧)を2乗します. 瞬時値が負の値を取ろうとも, 2乗すればすべて正の値となります. その後平均を取って, 最後に2乗した分を打ち消すため, 平方根(ルート)を取ります.

交流電流の実効値 \( I_R \) を数式で表すと以下のようになります. 比較のために, 平均値 \( I_A \) を併記します.

\begin{eqnarray} 平均値: I_A &=& \frac{1}{T} \int_{0}^{T} i dt \\ \\ 実効値: I_R &=& \sqrt{ \frac{1}{T} \int_{0}^{T} i^2 dt } \end{eqnarray}

ここで \( i \) は交流電流, \( t \) は時刻, \( T \) は周期を表します.

電力と実効値

電流, 電圧の実効値をこのように定義するには理由があり, それは電力と関係しています.

ある抵抗 \( R \) に直流電流 \( I \) を流したときの消費される電力 \( P \) は以下のように表されます.

$$ P= RI^2 $$

同様にして, 抵抗 \( R \) に交流電流 \( i \) を流したとき, 消費される平均電力 \( P_e \) は

$$ P_e = \frac{1}{T} \int_{0}^{T} R i^2 dt $$

上で述べた実効値を使って交流電流の平均電力を表記すると

$$ P_e = R {I_{R}}^{2} $$

となり, 直流電流を流した場合とほぼ同じ形に表せます. 上式から「交流電流の実効値」と「直流電流の大きさ」が同じであれば, 同じ電熱効果を生むことが分かります.

つまり, 電流の実効値とは 「交流電流を流したときと同じ電力が消費される直流電流の大きさ」を表しているのです.

様々な波形の実効値

交流には様々な形が存在します. 最もよく使われるのは正弦波ですが, デジタル回路を扱う際には方形波を用いますし, 交流を直流に変換する際には回路中に半波整流波が生じます.

一般家庭で使われる交流電流が正弦波交流である理由については, 以下記事もご参照ください.

正弦波交流が用いられる理由

交流の実効値は毎回定義から計算しても良いのですが, 波の形(正弦波, 三角波, 方形波 など)が分かっていれば, 振幅によって実効値が決まります.

実際に, 色々な波形の実効値を計算していきたいと思います. 計算を簡単にするため, 波の振幅はすべて \( I_m \) , 周期はすべて \( T \) とします. 振幅については実は色々と定義があるのですが, 今回は波の最大値と波の中心(平均値)の差を振幅とします.

正弦波

正弦波とは sin関数の形の波です. 式で書くと以下のようになります.

$$ i(t) = I_m \sin \, \omega t $$

\( \omega t \rightarrow \theta \) と変数変換して実効値を計算します.

\begin{eqnarray} I_R &=& \sqrt{ \frac{1}{T} \int_{0}^{T} i^2 dt } \; = \; \sqrt{ \frac{1}{2 \pi} \int_{0}^{2 \pi} i^2 d\theta } \\ &\rm{ }& \\ &=& \sqrt{\frac{1}{2 \pi} \int_{0}^{2 \pi} {I_m}^{2} \sin^2 \theta d \theta } \\ &\rm{ }& \\ &=& I_m \sqrt{\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2} (1- \cos \, 2 \theta) d \theta } \\ &\rm{ }& \\ &=& I_m \sqrt{ \frac{1}{2} – \frac{1}{4 \pi} \int_{0}^{2 \pi} \cos \, 2 \theta d \theta } \\ &\rm{ }& \\ &=& I_m / \sqrt{2} \end{eqnarray}

三角波

三角波の形はパッと見正弦波に似ていますが, 直線のみからなり, 所々滑らかではありません. 式で書くと以下のようになります.

\begin{eqnarray} i(t) = \left\{ \begin{array} \, \frac{T}{4} I_m \cdot t &\rm{ }& \;\; ( 0 \leq t < \frac{T}{4} ) \\ – \frac{T}{4} I_m \cdot t + 2 I_m &\rm{ }& \;\; ( \frac{T}{4} \leq t < \frac{3T}{4} ) \\ \frac{T}{4} I_m \cdot t -4Im &\rm{ }& \;\; ( \frac{3T}{4} \leq t < T ) \end{array} \right. \end{eqnarray}

実効値は以下のように計算できます.

\begin{eqnarray} I_R &=& \sqrt{ \frac{1}{T} \int_{0}^{T} i^2 dt } \\ \\ &=& \sqrt{ \frac{4}{T} \int_{0}^{T/4} \left( \frac{4}{T} \right)^2 {I_m} ^2 \, t^2 dt } \\ \\ &=& I_m \sqrt{ \left( \frac{4}{T} \right)^3 \frac{1}{3} \, \left[ t^3 \right]_{ \, 0} ^{ \, T/4 } } \\ \\ &=& I_m \sqrt{ \left( \frac{4}{T} \right)^3 \frac{1}{3} \left( \frac{T}{4} \right)^3 } \\ \\ &=& I_m / \sqrt{3} \end{eqnarray}

方形波

方形波(矩形波)はデジタル回路でよく用いられ, 2進法の 0 と 1 を電流の高低で表現します. 式で書くと下のようになります.

\begin{eqnarray} i(t) = \left\{ \begin{array} \, I_m \; ( 0 \leq t < T/2 ) \\ -I_m \; ( T/2 \leq t < T ) \end{array} \right. \end{eqnarray}

実効値の計算は非常に簡単です. というより計算しなくても分かりますよね.

\begin{eqnarray} I_R &=& \sqrt{ \frac{1}{T} \int_{0}^{T} i^2 dt } \\ \\ &=& \sqrt{ \frac{2}{T} \int_{0}^{T/2} {I_m} ^2 dt } \\ \\ &=& I_m \sqrt{ \frac{2}{T} \cdot \frac{T}{2} } \\ \\ &=& I_m \end{eqnarray}

方形波というと, off のときの値が 0 の波を指す場合もあります. その場合には on時間 と off時間 の比率によって実効値が変わってきます.

半波整流波

整流とは交流を直流にすることです. ダイオードに交流電流を流すと順方向の電流のみが取り出され, 半端整流波ができます. 半端整流は以下のように表せます.

\begin{eqnarray} i(t) = \left\{ \begin{array} \, I_m \sin{\omega t} \;\; ( 0 \leq t < T/4, T/2 \leq t < 3T/4 ) \\ 0 \;\; ( T/4 \leq t < T/2, 3T/4 \leq t < T ) \end{array} \right. \end{eqnarray}

実効値は (正弦波の実効値) \( / \sqrt{2} \) になります.

\begin{eqnarray} I_R = I_m /2 \end{eqnarray}

まとめ

今回の内容です.

  1. 実効値の定義と計算方法
  2. 実効値の意味
  3. 様々な波形の実効値計算

-Circuit
-, , , , , , ,

執筆者:


comment

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

関連記事

キルヒホッフの法則と基本カットセット行列

キルヒホッフの電流則(KCL)と電圧則(KVL)は回路解析の基本となる法則です. 直観的にも理解しやすい法則ですが, グラフを交えて見つめ直すとより理解が深まることでしょう. 本稿では, キルヒホッフ …

変成器の仕組みと行列表現:理想変成器が生み出す論理の歪み

本稿では, 変成器の構成や仕組みについて解説していきます. 変成器は電力輸送において重要な役割を果たし, 皆様の身近にも存在する電子部品ですが, 高校では中途半端にしか学びません. それもそのはず. …

電信方程式:線路内の反射波について

前回は電信方程式の一般解を導出しました. 今回は解の中身を詳しく見つつ, 線路(分布定数回路)内で起きていることを見ていきます. 電信方程式の解は 2つの項の和で出来ており, それぞれ「入射波」, 「 …

閉路方程式の対称性と相反定理

前回に引き続き, 閉路電流や閉路方程式に関する記事です. 今回は, 閉路方程式が持つ対称性を紹介しつつ, この対称性を使って相反定理(可逆定理)を証明していきます. 復習:閉路電流法 まずは閉路電流法 …

フェーザ表示の活用:複素インピーダンス

コイルやキャパシタに交流電圧を印加すると, 電流の位相が電圧に対して遅れたり, 進んだりするため, 直流回路で学んだことだけでは解析が困難. こうした解析に便利なのが「フェーザ表示」と「複素インピーダ …