Imaginary Dive!!

複素数, 研究, 科学について

「 複素数のための数学 」 一覧

フーリエ変換まであと一歩!フーリエの積分公式

フーリエ級数展開は $ a_0 \; /2 + a_1 \cdot \cos{x} + a_2 \cdot \cos{2x} + $ . . . と離散的な数値の無限和(級数)で とある周期関数を表し …

非周期関数と周期2πでない周期関数のフーリエ級数展開

フーリエ級数展開できる関数には条件がありました. その条件というのが「周期 2$ \pi $ の周期関数であること」でした. しかし, とある特別な操作によって, この制約を取り払い, 疑似的に「非周 …

フーリエ級数展開が自身と一致することの証明:ジョルダン・ルベーグの定理

フーリエ級数展開は (私の意見としまして), その概念を理解すれば十分に応用が可能です. 係数の求め方はネットに載っていますので, 忘れたときにはお手持ちの端末で検索すれば見つけられますし, 証明を知 …

フーリエ級数展開とは何か? (マクローリン展開とのアナロジーでざっくり解説)

フーリエ級数展開の主な使い方は熱伝導方程式や波動方程式など, 偏微分方程式の解を求めることですが, その考え方はフーリエ変換にも使われ, 幅広く応用される概念であります. そんな重要な概念のフーリエ級 …

テイラー展開, マクローリン展開とは何か?

マクローリン展開は様々な関数を「 $ x^n $ ( $n \geqq $ 0 の整数) の線形和」に変形する便利な数学的操作です. $\sin{(x)}$ などの三角関数や $ e^x $ などの指 …

コーシーの平均値の定理を視覚的に理解する

オイラーの公式を証明したり, 関数の近似値を計算するときに便利なマクローリン展開という操作があります. 今回はマクローリン展開を扱うための下準備として「コーシーの平均値の定理」をやっていきます. コー …