Imaginary Dive!!

複素数, 研究, 科学について

「 三角関数 」 一覧

フーリエ変換とは何か?指数関数型のフーリエ積分とフーリエ変換の定義

2020/08/06   -複素数基礎

この記事では, フーリエ変換とは何なのか, について語ります. フーリエ変換は, それ単体で理解できるものではございません. フーリエ級数展開, オイラーの公式(複素数について), 級数( $ \su …

複素形式のフーリエ級数展開とは何か

2020/08/03   -複素数基礎

フーリエ級数展開の式 $$ f(x) \sim \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos{mx} + b_m \sin{mx} $$ を見づらい, 美し …

非周期関数と周期2πでない周期関数のフーリエ級数展開

フーリエ級数展開できる関数には条件がありました. その条件というのが「周期 2$ \pi $ の周期関数であること」でした. しかし, とある特別な操作によって, この制約を取り払い, 疑似的に「非周 …

フーリエ級数展開が自身と一致することの証明:ジョルダン・ルベーグの定理

フーリエ級数展開は (私の意見としまして), その概念を理解すれば十分に応用が可能です. 係数の求め方はネットに載っていますので, 忘れたときにはお手持ちの端末で検索すれば見つけられますし, 証明を知 …

フーリエ級数展開とは何か? (マクローリン展開とのアナロジーでざっくり解説)

フーリエ級数展開の主な使い方は熱伝導方程式や波動方程式など, 偏微分方程式の解を求めることですが, その考え方はフーリエ変換にも使われ, 幅広く応用される概念であります. そんな重要な概念のフーリエ級 …

複素指数関数の定義を考え、オイラーの公式を導出 (証明)する

2020/05/30   -複素数基礎

オイラーの公式の導出 (証明)をやります. $$ e^{i \theta} = \cos{\theta} + i \sin{\theta} $$ オイラーの公式について, 私が最も理解に苦しんだのは …

複素数の極形式と回転

2020/05/09   -複素数基礎

実数平面上の点は, 直交座標表示と, 極座標表示で表すことが可能です. 複素平面 (ガウス平面)においても直交座標で表す方法と極座標で表す方法があります. 複素数を極座標っぽく表すことを極形式と言い, …