Imaginary Dive!!

複素数, 研究, 科学について

Dive into circuit!!

分布定数回路におけるF行列の導出・高周波測定における同軸ケーブルの効果

投稿日:

本サイトではこれまで分布定数回路を電信方程式で扱って参りました.

しかし, 電信方程式(つまり波動方程式)とは偏微分方程式です. 計算が大変であることは言うまでもないかと.

この偏微分方程式の煩わしい計算を回避し, 回路接続の扱いを容易にするのが, 4端子行列, またの名を F行列です.

本稿では, 分布定数回路における F行列の導出方法を解説していきます.

分布定数回路

まずは分布定数回路についての復習です.

電線や同軸ケーブルに代表されるような, 「部品サイズが電気信号の波長と同程度」となる電気部品を扱うために必要となるのが, 分布定数回路という考え方です. 分布定数回路内では電圧や電流の密度が一定ではありません.

分布定数回路内の電圧 $v \, (x)$ , 電流 $i \, (x)$ は電信方程式によって記述されます.

\begin{eqnarray} \left\{ \begin{array} \, \frac{ \mathrm{d} ^2}{ \mathrm{d} x^2} \, v \, (x) = \gamma ^2 \, v \, (x) \\ \, \frac{ \mathrm{d} ^2}{ \mathrm{d} x^2} \, i \, (x) = \gamma ^2 \, i \, (x) \end{array} \right. \; \cdots \; (1) \\ \rm{ } \\ \rm{ } \, \left( \gamma ^2 = zy \right) \end{eqnarray}

ここで, $z=r + j \omega \ell$, $y= g + j \omega c$, $j$ は虚数単位, $\omega$ は入力電圧信号の角周波数, $r$, $\ell$, $c$, $g$ はそれぞれ単位長さあたりの抵抗, インダクタンス, キャパシタンス, コンダクタンスです.

導出方法, 意味するところの詳細については以下のリンクをご参照ください.

この電信方程式は電磁波を扱う「波動方程式」と全く同じ形をしています. つまり, ケーブル中の電圧・電流の伝搬は, 空間を電磁波が伝わる場合と同じように考えることができます. 違いは伝搬が 1次元的であることです.

入射波と反射波

電信方程式 (1) の一般解は以下のように表せます.

\begin{eqnarray} \left\{ \begin{array} \, v \, (x) &=& A \, e^{- \gamma x} \, + \, B \, e^{ \gamma x} \\ \, i \, (x) &=& z_0 ^{-1} \; \left( A \, e^{- \gamma x} \, – \, B \, e^{ \gamma x} \right) \end{array} \right. \; \cdots \; (2) \\ \rm{ } \\ \rm{ } \, \left( z_0 = \sqrt{ z / y } \right) \end{eqnarray}

電圧も電流も2つの項の和で表されていて, $A \, e^{- \gamma x}$ の項を入射波, $B \, e^{ \gamma x}$ の項を反射波と呼びます.

分布定数回路内の反射波について詳しくは以下をご参照ください.

入射波と反射波は進む方向が逆向きで, どちらも進むほどに減衰します.

双曲線関数型の一般解

式(2) では一般解を指数関数で表しましたが, 双曲線関数で表記することも可能です.

\begin{eqnarray} \left\{ \begin{array} \, v \, (x) &=& A^{\prime} \cosh{ \gamma x} + B^{\prime} \sinh{ \gamma x} \\ \, i \, (x) &=& – z_0 ^{-1} \; \left( B^{\prime} \cosh{ \gamma x} + A^{\prime} \sinh{ \gamma x} \right) \end{array} \right. \; \cdots \; (3) \end{eqnarray}

$A^{\prime}$, $B^{\prime}$は 式(2) に登場した定数と $A+B = A^{\prime}$, $B-A = B^{\prime}$ の関係を有します.

式(3) において, 境界条件が2つ決まっていれば解を1つに定めることが可能です.

仮に, 入力端の電圧, 電流がそれぞれ $ v \, (0) = v_{in} \, $, $i \, (0) = i_{in}$ と分かっていれば, $A^{\prime} = v_{in}$, $B^{\prime} = – \, z_0 \, i_{in}$ となるので, 入力端から距離 $x$ における電圧, 電流は以下のように表されます.

\begin{eqnarray} \left\{ \begin{array} \, v \, (x) &=& v_{in} \cosh{ \gamma x} \, – \, z_0 \, i_{in} \sinh{ \gamma x} \\ \, i \, (x) &=& \, – z_{0} ^{-1} v_{in} \sinh{ \gamma x} \, + \, i_{in} \cosh{ \gamma x} \end{array} \right. \; \cdots \; (4) \end{eqnarray}

以上復習でした. 以下, 今回のメインとなる4端子回路網について話します.

分布定数回路のF行列

4端子回路網

交流信号の取扱いを簡単にするための概念が4端子回路網です. 4端子回路網という考え方を使えば, 分布定数回路の計算に微分方程式は必要なく, 行列計算で電流と電圧の関係を記述できます.

4端子回路網は回路の一部(または全体)をブラックボックスとし, 中身である回路構成要素については考えません. 入出力電圧と電流の関係のみを考察します.

図1. 4端子回路網

図1 において, 入出力電圧, 及び電流の関係は以下のように表されます.

\begin{eqnarray} \left[ \begin{array} \, v_{in} \\ \, i_{in} \end{array} \right] = \left[ \begin{array}{cc} F_1 & F_2 \\ F_3 & F_4 \end{array} \right] \, \left[ \begin{array} \, v_{out} \\ \, i_{out} \end{array} \right] \; \cdots \; (5) \end{eqnarray}

式(5) 中の $F= \left[ \begin{array}{cc} F_1 & F_2 \\ F_3 & F_4 \end{array} \right]$ を4端子行列, または F行列と呼びます.

4端子回路網や4端子行列について, 詳しくは以下のリンクをご参照ください.

分布定数回路のF行列

ここで, 改めて入力端境界条件が分かっているときの電信方程式の解を眺めてみます.

\begin{eqnarray} \left\{ \begin{array} \, v \, (x) &=& v_{in} \cosh{ \gamma x} \, – \, z_0 \, i_{in} \sinh{ \gamma x} \\ \, i \, (x) &=& \, – z_{0} ^{-1} v_{in} \sinh{ \gamma x} \, + \, i_{in} \cosh{ \gamma x} \end{array} \right. \; \cdots \; (4) \end{eqnarray}

線路の長さが $L$ で, $v \, (L) = v_{out} $ , $i \, (L) = i_{out} $ とすると,

\begin{eqnarray} \left\{ \begin{array} \, v_{out} &=& v_{in} \cosh{ \gamma L} \, – \, z_0 \, i_{in} \sinh{ \gamma L} \\ \, i_{out} &=& \, – z_{0} ^{-1} v_{in} \sinh{ \gamma L} \, + \, i_{in} \cosh{ \gamma L} \end{array} \right. \; \cdots \; (6) \end{eqnarray}

式(6) を入力電圧 $v_{in}$ , 入力電流 $i_{in}$ について解くと,

\begin{eqnarray} \left\{ \begin{array} \, v_{in} &=& \, \cosh{ \gamma L} \, v_{out} \, + \, z_0 \, \sinh{ \gamma L} \, i_{out} \\ \, i_{in} &=& \, z_0 ^{-1} \, \sinh{ \gamma L} \, v_{out} \, + \, \cosh{ \gamma L} \, i_{out} \end{array} \right. \; \cdots \; (7) \end{eqnarray}

これを行列の形で表示すると, 以下のようになります.

\begin{eqnarray} \left[ \begin{array} \, v_{in} \\ \, i_{in} \end{array} \right] = \left[ \begin{array}{cc} \, \cosh{ \gamma L} & \, z_0 \, \sinh{ \gamma L} \\ \, z_0 ^{-1} \, \sinh{ \gamma L} & \, \cosh{ \gamma L} \end{array} \right] \, \left[ \begin{array} \, v_{out} \\ \, i_{out} \end{array} \right] \; \cdots \; (8) \end{eqnarray}

式(8) を 式(5) と見比べて頂ければ分かる通り, $v_{in}$, $i_{in}$ が入力端の電圧と電流, $v_{out}$, $i_{out}$ が出力端の電圧, 電流と考えれば, 式(8) の $2 \times 2$ 行列は F行列そのものです.

つまり、長さ $L$ の分布定数回路のF行列は,

$$ F= \left[ \begin{array}{cc} \, \cosh{ \gamma L} & \, z_0 \, \sinh{ \gamma L} \\ \, z_0 ^{-1} \, \sinh{ \gamma L} & \, \cosh{ \gamma L} \end{array} \right] \; \cdots \; (9) $$

となります.

F行列の使い方

F行列を使って簡単な計算をしてみましょう.

何らかの線形電子部品に同軸ケーブルを繋いで, 電子部品のインピーダンス測定する場合を考えます.

図2. 測定系

電圧 $v_{in}$ を印加すると, 電源には $i_{in}$ の電流が流れたと仮定します. 電子部品のインピーダンス $Z_{DUT}$ はどのように表されるでしょうか.

図2 の測定系を4端子回路網で書き換えると, 下図のようになります.

図3. 4端子回路網で表した回路図

同軸ケーブルの長さ $L$ や線路定数の定義はこれまで使っていたものと同様です. このとき, 図3中各電圧, 電流の関係は, 以下のように表されます.

\begin{eqnarray} \left[ \begin{array} \, v_{in} \\ \, i_{in} \end{array} \right] = \left[ \begin{array}{cc} \, \cosh{ \gamma L} & \, z_0 \, \sinh{ \gamma L} \\ \, z_0 ^{-1} \, \sinh{ \gamma L} & \, \cosh{ \gamma L} \end{array} \right] \, \left[ \begin{array} \, v_{out} \\ \, i_{out} \end{array} \right] \; \cdots \; (10) \end{eqnarray}

出力電圧, 電流について書き換えると, 以下のようになります.

\begin{eqnarray} \left[ \begin{array} \, v_{out} \\ \, i_{out} \end{array} \right] = \left[ \begin{array}{cc} \, \cosh{ \gamma L} & \, – z_0 \, \sinh{ \gamma L} \\ \, – z_0 ^{-1} \, \sinh{ \gamma L} & \, \cosh{ \gamma L} \end{array} \right] \, \left[ \begin{array} \, v_{in} \\ \, i_{in} \end{array} \right] \; \cdots \; (11) \end{eqnarray}

ここで, F行列の成分は既知の値であり, 入力電圧 $v_{in}$ と 入力電流 $i_{in}$ も測定結果より既知です.

求める電子回路のインピーダンスは $Z_{DUT} = – v_{out} / i_{out}$ なので,

$$ Z_{DUT} = \frac{\cosh{ \gamma L} \, v_{in} \, – \, z_{0} \, \sinh{ \gamma L} \, i_{in} }{ z_{0} ^{-1} \, \sinh{ \gamma L} \, v_{in} \, – \, \cosh{ \gamma L} \, i_{in} } \; \cdots \; (12) $$

となります.

式(12) より, 測定周波数が小さいとき($ \omega \to 0 $ のとき, 則ち $ \gamma L << 1 $ のとき)には, $\cosh{\gamma L} \to 1$ , $\sinh{\gamma L} \to 0$ とそれぞれ漸近します.

よって, $Z_{DUT} = – v_{in} / i_{in} $ となり, 「電源で測定した電流で電源電圧を割った値」がそのまま電子部品のインピーダンスであると見なすことができます.

一方, 周波数が大きくなれば, 上記のような近似はできなくなり, 電源で測定したインピーダンスから実際のインピーダンスを決定するための補正が必要となることが分かります.

高周波で測定を行うときに気を付けなければいけない理由はここにあり, いつでも電源で測定した値を鵜呑みにしてよいわけではありません. 高周波測定を行う際にはケーブルの長さや, 試料の凡そのインピーダンスを把握しておく必要があります.

まとめ

F行列は回路の縦続接続を扱うときに大変重宝します. 今回は扱いませんでしたが, 分布定数回路のF行列を使うことで, 縦続接続の計算はとても簡単になります.

また, F行列は回路網を表現するための「道具」に過ぎません.

つまり, 存在を知っているだけではほとんど意味がありません. それを使って初めて意味が生じるものです.

便利な道具として自在に扱えるよう, 一度手計算をしてみることを強くお勧めします.

-Dive into circuit!!
-, , , , , , ,

執筆者:


comment

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

関連記事

複素電力に複素共役が用いられる理由をインピーダンスとのアナロジーで解説

今回と次回で複素電力について解説します. 複素電力の定義を見て, 誰もが感じる疑問は「なぜ電流フェーザの複素共役を掛けるのか」でしょう. 「それはそういうものだ」と納得できるならば良し. 納得できない …

電信方程式:線路内の反射波について

前回は電信方程式の一般解を導出しました. 今回は一般解の中身を詳しく見つつ, 線路(分布定数回路)内で起きていることについて理解を深めて頂ければ幸いです. 電信方程式の解は2つの項の和で出来ており, …

正弦波のフェーザ表示(複素数表示)

正弦波とはその名の通り sin関数の形をした波のこと. コイルやキャパシタという回路要素は入力された信号を微分, もしくは積分して出力するのですが, コイルやキャパシタを sin関数が通過すると co …

n端子対回路網の行列表現とZ行列・F行列・S行列の相互変換

2端子対回路網(4端子回路網)を拡張したものが n端子対回路網という考え方です. 入力端子対や出力端子対が複数存在する回路の解析を容易にします. 本稿では n端子対回路網における Z行列, S行列, …

複素電力とは?複素電力の使い方

前回インピーダンスとのアナロジーを使って, 複素電力の定義に「電流フェーザの複素共役」が現れる理由を解説しました. 今回は複素電力に関係する用語(実効電力, 無効電力, 皮相電力)に触れつつ, 複素電 …